ChemModLab: A Web-Based Cheminformatics Modeling Laboratory

نویسندگان

  • Jacqueline M. Hughes-Oliver
  • Atina D. Brooks
  • William J. Welch
  • Morteza G. Khaledi
  • Douglas M. Hawkins
  • S. Stanley Young
  • Kirtesh Patil
  • Gary W. Howell
  • Raymond T. Ng
  • Moody T. Chu
چکیده

ChemModLab, written by the ECCR @ NCSU consortium under NIH support, is a toolbox for fitting and assessing quantitative structure-activity relationships (QSARs). Its elements are: a cheminformatic front end used to supply molecular descriptors for use in modeling; a set of methods for fitting models; and methods for validating the resulting model. Compounds may be input as structures from which standard descriptors will be calculated using the freely available cheminformatic front end PowerMV; PowerMV also supports compound visualization. In addition, the user can directly input their own choices of descriptors, so the capability for comparing descriptors is effectively unlimited. The statistical methodologies comprise a comprehensive collection of approaches whose validity and utility have been accepted by experts in the fields. As far as possible, these tools are implemented in open-source software linked into the flexible R platform, giving the user the capability of applying many different QSAR modeling methods in a seamless way. As promising new QSAR methodologies emerge from the statistical and data-mining communities, they will be incorporated in the laboratory. The web site also incorporates links to public-domain data sets that can be used as test cases for proposed new modeling methods. The capabilities of ChemModLab are illustrated using a variety of biological responses, with different modeling methodologies being applied to each. These show clear differences in quality of the fitted QSAR model, and in computational requirements. The laboratory is web-based, and use is free. Researchers with new assay data, a new descriptor set, or a new modeling method may readily build QSAR models and benchmark their results against other findings. Users may also examine the diversity of the molecules identified by a QSAR model. Moreover, users have the choice of placing their data sets in a public area to facilitate communication with other researchers; or can keep them hidden to preserve confidentiality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Putting together the pieces: building a reaction-centric electronic lab notebook for mobile devices

The presentation will describe 4 years of work creating chemical structure based user interfaces for mobile devices, combined with creation of cloud-hosted webservices for supporting functionality. A number of products have been created along the way, for drawing structures and reactions, managing collections of data, searching databases, creating publication quality graphics, sharing and colla...

متن کامل

Linking the Resource Description Framework to cheminformatics and proteochemometrics

BACKGROUND Semantic web technologies are finding their way into the life sciences. Ontologies and semantic markup have already been used for more than a decade in molecular sciences, but have not found widespread use yet. The semantic web technology Resource Description Framework (RDF) and related methods show to be sufficiently versatile to change that situation. RESULTS The work presented h...

متن کامل

Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information

The Online Chemical Modeling Environment is a web-based platform that aims to automate and simplify the typical steps required for QSAR modeling. The platform consists of two major subsystems: the database of experimental measurements and the modeling framework. A user-contributed database contains a set of tools for easy input, search and modification of thousands of records. The OCHEM databas...

متن کامل

Molecular structure input on the web

A molecule editor, that is program for input and editing of molecules, is an indispensable part of every cheminformatics or molecular processing system. This review focuses on a special type of molecule editors, namely those that are used for molecule structure input on the web. Scientific computing is now moving more and more in the direction of web services and cloud computing, with servers s...

متن کامل

ChEMBL Beaker: A Lightweight Web Framework Providing Robust and Extensible Cheminformatics Services

ChEMBL Beaker is an open source web framework, exposing a versatile chemistry-focused API (Application Programming Interface) to support the development of new cheminformatics applications. This paper describes the current functionality offered by Beaker and outlines the future technology roadmap.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • In silico biology

دوره 11 1-2  شماره 

صفحات  -

تاریخ انتشار 2011